NACA TN 2539 G268

NN ‘gdvy AH!!!J,!,I,"I HO3L

NATIONAL ADVISORY COMMITTEE
FOR AERONAUTICS —

TECHNICAL NOTE 2539

APPLICATION OF VARIATIONAL METHODS TO TRANSONIC FLOWS
WITH SHOCK WAVES
By Chi-Teh Wang and Pei-Chi Chou

New York University

Washington
November 1951
A??f'é"ﬁ
TECHRITAS, L:BRARY
AEL 2811




TECH LIBRARY Kkapp

/muﬁnmmmww il

D0L5483
NATTONAL ADVISORY COMMITTEE FOR AERONAUTICS
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APPLICATION OF VARTATIONAL METHODS TO TRANSONIC FLOWS
WITH SHOCK WAVES

By Chi-Teh Wang and Pei-Chi Chou
SUMMARY

Variational methods for the approximate solution of subsonic and
transonic flows of a compressible fluid before the occurrence of shock
waves have been carried out in previous papers. The methods fail as
soon as the shock waves occur as the flow behind the shock waves now
becomes rotational end has variable entropy. Since most transonic flows
are accompanied by shoc%'waves, a method which allows for shock waves
and variable entropy is necessary for the study of such flows. By
modifying Bateman's variational principle for irrotational flows, it is
shown that a varlational principle for flows with rotation and variable
entropy can be obtained. By applying this variational principle to the
regions of flow behind shock waves and Bateman's original principle to
the other regions in the fluid, shock equations can be directly obtained.
A procedure for computing numerical solutions for such flows is suggested,
and a numerical example is carried out. At high Mach number above a
certain limiting value, the results show that irrotatiordal flow fails.
However, by inserting shock waves and allowing a part of the flow to be
rotational, computation indicates that solution exists again.

INTRODUCTION

In previous papers (references 1 to 7) the senior awthor and his
associates have succeeded in applying the variational methods to the
study of subsonic and tramsonic flows of a compressible fluid past
arbitrary bodies before the occurrence of shock waves. Numerical examples
were carried out in the case of the flow past a circular cylinder, an
elliptical cylinder, a Kaplean bump, a sphere, and an ellipsoid. The
results were found to check excellently with those computed by other
methods. These results Indicate that the variational method will give
good approximations to flows past either thick or thin bodies and at
both low and high Mach numbers. The method as formulated, however, can
only be applied to irrotationel flows. As soon as shock waves occur the
method falls because the flow behind the shocks then becomes rotational.
As most transonic flows are accompanied by shock waves, different methods
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which allow the rotationality of the flow as well as variable entropy
must be formulated if any significant results are to be obtained from
the studies of such flows.

A reexamination of Bateman's variational prin: iples (reference 8)
indicates that with some modification the principle in terms of the
stream function V¥, which was originally formulated for irrotational
flows, can also be applied to rotational flows with entropy change. The
resulting variational integral is the same as the one recently obtained
by Lin and Rubinov (reference 9). In the study of transonic flows this
Integral is to be applied in the region of flow after shock waves and
the original Bateman integral in the other regions. It can be shown
that the shock equations are directly obtainable from these principles.
With the variational principles obtained, a direct method for the approxi-
mate solution of transonic flow with shock waves may again be formulated
-following the Rayleigh-Ritz procedure. The actual carrying out of such
a method however was found too laborious. Instead, Galerkin's method
may be used which shortens the numerical work to a great extent. In
this report approximate solution in the case of the transonic flow past
a circular cylinder has been carried out. The rebults show that when
the Mach number increases to a certain limiting value without allowing
for shock waves the variational method does not have a solution., This
probably indicstes the breakdown of the irrotational flow. By allowing
the occurrence of shock waves, solution asgain exists.

This work was conducted at the Daniel Guggenheim School of Aeronsutics,
College of Engineering, New York University, under the sponsorship and

with the financial assistance of the National Advisory Committee for
Aeronautics. The authors are indebted to Professor F. K. Teichkmann for

his kind interest.
SYMBOLS

a velocity of sound
Apns>BonsA an »B'an undetermined parameters

specific heat at constant pressure and volume,

CpsCv

regpectively
c1,C2,C3 constants
M Mach pnumber (q/a)

n normsl distance
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P pressure

q . maegnitude of velocity vector, with components u
and v

s entropy

u velocity component in x-direction

v velocity component in y-direction

X,¥ coordinates of a point in the fluid

7 isentropic exponent (cp / cv)

P velocity potential function

\ stream function

p mass density

o rotation of flow

U velocity of undisturbed stream

Subscripts

X,y,r,8 denote differentiation in corresponding direction

8 isentropic stagnation conditions for undisturbed
stream

o conditions of undisturbed stream

GOVERNING DIFFERENTTAL EQUATTONS AND BOUNDARY CONDITIONS

Consider a steady two-dimensional flow passing a cylinder of
arbitrary shape. Most aerodynamic problems are concerned with either
flow from rest or flow which is parallel and uniform at infinity. In
such cases before the occurrence of shock waves the flow is irrotational.
As the speed of the flow increases, shock waves occur. For example, the
flow past an airfoil is shown in figure 1. The flow is assumed to be
subsonic at infinity. Because of the presence of the airfoil, if the
Mach number of the flow is sufficiently high there will be a region of
supersonic flow near the surface of the airfoil, as shown by the dotted




NACA TN 2539

lines in the figure. Shock waves will occur at some points on the
surface in these supersonic regions and will terminate in the flow
where local Mach number is equal to 1. Then in the region extending
to infinity behind the shock waves and bounded by the stream lines
passing through the points where the shock terminates, the flow is
rotational and with variable entropy. For convenlence, this region
will be denoted by Dp, and the region outside Dp, by Dy. Then

in Dy the following equations must be satisfied:
(1) The two equations of motion
uuy + Vi = -lep
(1)
uvy + Vvy = -py/p |
J

where u and v are the velocity components in the x- and y-directions,
p the density, and p the pressure, and the subscripts x and Yy
indicate partial differentiation in the corresponding direction.

(2) The equation of continuity

(pu)y + (pv)y, = 0 (2)

(3) The equation of state

b = C107 (3)

where c¢3 18 a constant and 7 1is the ratio of specific heats. If the
subscript s 1is used to indicate the stagnation conditions, cj = ps/ps7.

(4) The irrotationality condition
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With aid of equation (4), equation (1) can be integrated to give

2
D + g

:—'——(7 - 1)p ? = C2 (5)

where q2 =u® + v2 and Co is another constant.

Y

The boundary conditions are that at infinity the velocity components
u and Vv are equal to the given values, and on the solid boundary of
the alrfoil the normal component of the velocity vanishes.

In region Do the flow becomes now rotational and the entropy S
is no longer a constant., Here the governing differential equations are
as follows: Equation of motion (1) and the equation of continuity (2)
are st1ll valid. The equation of state has to be changed to the
following form:

p = c3e%/ev o (6)

vwhere cy 1is the specific heat at constant volume and where c3 1is a
constant. The energy equation is

uSy + V8y = O (7)

For flows derlved from isentropic irrotational flows by a shock, there
is the Bo-called condition of isoenergetic flow

2
7le+q?=02 (5a)

where co 1s a constant throughout the flow, before and after the shocks.

This equation is then identical to equation (5); it implies equation (T)
when equations (1) and (2) are satisfied.

The boundary condition at the solid body is the same as before; that
is, the normal component of velocity must be zero. The condition at
infinity, however,  is no longer the same, because if the velocity were
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constant at infinity the flow would again be irrotaticnal. The correct
boundary condition in-this case is that the pressure must be a constant

at infinity.

Since the flow in a part of the domain ié’rotational, the velocity
potential ¢ obviously cannot be used and it is convenient to introduce
in such cases the stream function V¢ defined by

(8)

Equation (7) indicates that the entropy S is a constant along
each streamline, The entropy S can therefore be written in the

following form:

and the equation of state (6) as

D = c3ef(W)py (10)

With some calculation, the rotation of the flow may be written in terms
of ¥ as follows:

® = vy - Uy
(11)

c3e”ef(Ner(y) iy - 1)
VARTATTONATL PRINCIPLES

Instead of studying the boundary-value problems as formulated in
the preceding paragraphs, it is sometimes more convenient to study the
associated veristional problems, especially when the exact solutions of
the differential equations are very difficult to obtain. In such cases,
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approximate methods of solution such as the Rayleigh-Ritz method and
the Galerkin method will be extremely useful.

For irrotational flows, two variational principles were given by
Bateman (reference 8), one in terms of the velocity potential and the
other in terms of the stream function. The first one is more sultable
for studying the flow passing arbitrary bodies and has been used by the
genior author and his associates in computing such flows in refer-
ences 1 to 7. In the present case, the second principle which is
expressed in terms of ¥ should be used.

If the pressure is
p = F(p) - pF'(p) (12)

where F(p) is some function of p and the prime indicates differentia-
tion, the variational integral is

’ 2 2
Iy =k[7f[ékp) 4-£j§i—é;£&1—2 dx dy (13)

in which p and V¥ are to be varied independently.

Equation (12) is a differential equation of the Clairaut type.

74
If p = cqp?, the solution of equation (12) is F(p) = cpp - ;}p -
The integral J7 then becomes
5 2 2
cyp Yy~ + ¥
Jy =h[7\c2p - E + ( X J ) dx dy (14)

7 -1 2p

The condition that &J7 = O then leads to

c17 1
ﬂl(:z - 07-1) - -——zp2<¢x2 + wf) 8p ax dy -
1oV st gg =
(wx/p)x + (Wy/p)y 8¥ ax dy + 55 8 ds = 0




8 NACA TN 2539

where the last integral is taken on the boundary of the domain. If this
line integral is zero, the condition &Jy = O leads to the following

equations

7
y -1

(efe)x + (¥y o)y = ©

—l§(¢ 24y 2)

B:c
20\ X Yy p 2

as the Euler equations in the calculus of variation. The first equation
is the Bernoulli equation and the second is the condition of irrotation-
ality. The condition of continulty is satisfied automatically by intro-
ducing the stream function V. Thus if the line integral is equal tq
zero the vanishing of the first variation of J 1leads to the desired
differential equations. If the line integral is not zero, as in similar
cases discussed in references 1, 2, 6, and 10, the value of the integral
must be subtracted from &J; and J; should be modified accordingly.

Tt is interesting to note that although the variational integral (13)
is formulated by Bateman for irrotational flow only, it is also valid
for rotational flow if in equation (12) F(p) is replaced by F(p,S)
and is solved from the correct equation of state, equation (6) or (10).
In this case

F-p ég = C3ef(w)p7
op

The solution of this differential equation may be written as

F(Q,S) =cC (7 ~ l) (15)

oP

and a variational in%egral for the rotational flow after shock waves may
be written as follows

£(¥) 7
o =[[ {E?‘p —_c?j - 1‘;] ¥ (\VXEQZ %Q) ax dy (16)
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This is the same integral recently obtained by Lin and Rubinov (refer-
ence 9). As before, the condition &Jp = O leads to

f 7-1 2 2
blyﬁ ca - yc3e ($)p _ (Wx + V! ) 80 dx dy -
| (r - 1) 2p°

B £(y)pr ’
blyxtjépzj _le (¥) .\ <?x/9)x + (fy/é)y &y dx dy +

fllaxyds_o

p on

The last integral is again taken on the boundary of the domain. If this
integral is zero, there result

ﬁ“}e h “3'2) + 7D

202 (r - 1)p 2

(o) + (;"y/ )y = -¢3 p;ef(i‘) £1(¥) (17)

as the Buler's equations. The first equation is the energy equation (5a)
and the second equation is the rotation equation (11). With the aid of
the second equation, the equations of motion (1) can be derived from the

first equation as follows: Writing the first equation in a slightly
different form,

£(V) 7y-1 , 1{.2 =
7—%%’3()9 +§(}1+V2)-°2
Differentiating it with respect to x,

regef (Ne7-20, + - Lv c3ef(Wor-ler(v)uy +

(18)
uuy, + Vv, = 0
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Since p = C3ef(¢)p7,

px/p = 7c3ef(’l’)p7'2px + c3ef($)p7'}f‘(ﬂf)\lfx

Substitution in equation (18) results in

As c3p7ef(¢)f‘(w)/(7 -1) = vy, - uy, and %‘Wx = v, equation (19) is

identical to the equation of motion in the x-direction. Similarly,
differentiation of equation (17) with respect to y results in the other
equation of motion.

SHOCK CONDITIONS AS A RESULT OF VARTATIONAL PRINCIPLE

In discussing the mathematical formulation of the problem, the flow
as shown in figure 1 may be put into a simplified form as shown in fig-
ure 2, where Dy and D, denote the regions when the flow is irrota-

tional and rotational, respectively, and C,;_o 1is the shock wave plus
the common boundary. The variational principle 1is that

8J = 8Jy + 8J, = 0

leads to the desired differential equations in the corresponding domain.

Here
B c101” (V152 + ¥1.2)
Jl:/f cepl_ll+<b{2 15°) ax dy

y -1

— £V —
do =\Z7p CoPo - + dx dy (20)
D2 (7 - l) , 202
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where as shown in the above expressions Jj; 1is integrated over Dj

and Jp over Dp; p3,¥) and p,,¥, indicate that p and V¥ .are
different functions in the domains D; and Dy; and the func-

tions pj, Py, Wl, and V¥, are to be varied independently. The
condition 8&J = O +therefore leads to

[ 7-1
_ree T (B + A )
Dy (r - 1) 20y

-

‘ ﬂ;l (wlx/ pl)x - (wly/pl);lswl ax dy +

L[f c, - rezef@2lo1  (¥oel + Yoyd | 8pp dx dy -
Dy| 2 - 1) 2 2
2 (v 205

L

czp7ef V)t
,[/]‘32 —3 o (j(—eif () + (sz/pg)x + (ﬂIQy/pg);Jﬁﬂfg dx dy +

19
u/;l 5, o 6W1 ds-+

1 92 f 1 1, 1% )
~/;2 e S OV2 8+ Cl_e(pl St - ok ) as =0

Consider the line integrals first. On a part of C; and Cp where
the boundary is the surface of the body, V¥; and V, are equal to
the chosen constants. Then &V, = 8¥, = O, and the first two line

integrals are zero. These integrals may not be Zero when taken over
the other parts of the boundaries. In such cases, the values of the
integrals must be subtracted from ©&J and J must be modified accord-~
ingly. On the shock waves, if

(1fer) /o) = (1)ez)(re/20) (21




12 NACA TN 2539

and
1]’1 = \ye (22)

the third integral vanishes. Condition (21) requires the velocity
components tangent to a shock wave to be the same in passing through
the shock. Condition (22) is the continuity equation in crossing a
shock wave. On the common boundary, since it is a streamline,

Gwl = BWE = 0 and the line integral wvanighes.

When the line integrals are zero or modified to be zero, the
following Euler equations are obtained from the well-¥nown rules of the
Calculus of Variation. They are

7P + (Wlxe + ¢1y2)

(r - 1)pg 2012 szt . (23) .
7Do (‘l‘axg * ‘bye) : L
(v - l)De " 2p 2 =% in D2 (2k)
. 2
o 3
S;(%I *ix) + 55(5; *iy) =0 in D (25)

ax %_2_ WEX) + -g—y(—gz ‘\5123.) = -C3P27ef(¢2)f'('§'2)/(7 -1) in Do (26)

Equations (23) and (24) indicate that the energy in the fluid remains
unchanged in crossing a shock wave. With equations (23) and (25) and
equations (24) and (26), the equation of motion can be derived; that is,
the momentum of the flow also remains the same in crossing a shock. The
continuity equation is already given as equation (22). Therefore, from

PO I 2 B S

- - - - - B T e
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SUBSONIC AND TRANSONIC FLOWS PAST A CIRCULAR CYLINDER

BEFORE OCCURRENCE OF SHCCK WAVES

As a first step to the solution of transonic flows with shock waves,
the flow before the occurrence of shock waves will be considered. The
variational integral J contains two variables, p and V. Numerical
calculation may be carried out by followlng the Rayleigh-Ritz procedure.
Unlike the cases considered in references 1 to 6 where the velocity
potential @ 1s used, the labor involved in the computation by taking V
and p as variables in the Rayleigh-Ritz method becomes excessively
large. Instead, Galerkin's method was found to be much more simple
in this case. The application of Galerkin's method to compressible-
flow problems has been discussed in detail in references 3 and 4 and
can be briefly outlined as follows: First the variables ¢ and p
are written in the form of series which satisfy the boundary conditions
but with undetermined parameters, such as

wgg%m
Po * Z;j :é: BunPmn

¥

1]

F (27)

°
]

-/

where A, and B, are the undetermined parameters. Then Ay,
and By, are determined from the conditions

I[KVx/D)x + (ﬂry/p){l% dx dy = 0 (28)
ffl?epe } ;c_}% p”l) il %Q’x2 * ﬂ’yejlflz—n axdy=0  (29)

With A, and B,  determined, equations (27) give an approximate solu-
tion to the problem. :

It was found, however, that near the limiting Mach number where
shock waves are about to occur, the p-series converges rather slowly and
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many parameters have to be used. The amount of work involved in the
integration and in the solution of the resulting simultaneous equations
with many parameters agaln becomes very great. A modified Galerkin
method has been tried and it was found possible to reduce much of the
numerical work. The method is essentially as follows: Instead of
determining By, by Galerkin's method, these parameters can be solved

in terms of Apyp from the Bernoulli equation:

2 _ 17 y41) _ Lfy 2 2\ _
<c2p 7————_lp ) g(llfx +1¥y) 0 (30)

by the method of equal coefficients. The parameters A, then become
the only unknowns and they are determined by the Galerkin method.

In the case of two-dimensional flow past a circular cylinder with
unit radius the boundary conditions are at r = o

and at r =1

¥y = 0

Consider the case where the circulation is zero. The flow must then
be symmetrical with respect to both the x- and y-axis. The boundary
conditions and the conditions of symmetry are satisfied if V and »p
are assumed in series of the following forms:

¢'=poU&'—%)sin9+i g%(ﬁ—ﬁ)siﬁn@ (31)

m=1
and

D=po<l+i ;Bm%> (32)

m=1 n
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Taking two parameters in V¥, equation (31) becomes

= -1 1 1 Aot o L
‘V—DOU (r r)sin9+All(r r3> sin9+Al3<r r3> sin 36 (33)

Substituting equation (33) into equation (30) and equating the coeffi-

cients of ;]gﬁ and cos nfd, +there result

o
|
@]

- >
Bln-O if n =23
1 % 2 2\ 1f, 2 2
0
P20 =2 lT(All +1+5A13)"E(311 +312)H
(o) - L
_
2
M suaa L -ua)-B B &
21 "2 1| 2 11 1113 13 11712
5 o
1 % (. -k
Bee‘Mo —| 2 (8A13 +2A11A13), 23112H
S
[ 2
1 % 2) :
P23 T2 11 T(”AB - BpB ot
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1 1 o
Boy =gz o128 Pt

3

8

2,2 (All - apy° - 3A132) - (311321 + Blszz)H +

B11By1o ]

+ B__ B H +
12%1)

(y + 1)y 2
~ B
BB

LL_)_L
H + BllBl2

>
B, =0 if nZ5
!
P30 Tz 1|
1 2
B Ay
317 M02 -1 Mo (
B1oBpy + BlzBe)H + 2 1)7( Bl1° + 3
B, = —pt -(BB + B..B__ + 2B +BB)H+
32 T 21| \ilal 11723 1050 ol
1y 3)
5 12
_ l 2 2 _
B33 = E3M A3 (311322 + By1By
3311312]
1 |
# T yE (13111323 + 312]322>H
__1 |
Bag “HE - 1L§31132u T B1oPos3
_ -B B, H + !1_““_1_)13 3
36 M02 1 2k

(y + 1)
N T
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1 2
$7__T8__)l By Blgl

A112 + 38,3 - 6A11A13) - (2312320 + ByyBop +

11 12

(7+1)7( 3
5 b ¢
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2
-1 M 2 2 2,15 .2 ,1p 2,15 2

1, 2 1)y /(1
oo2k * ByyByy + B12]332> + '(;)1(2 Bll Bao + 81 Bap *
1 1 2 lp 2 + 1)y (3, bk
2B11P1oBo1 + 5B11ByoBog + 5B,%B,0 + P12 Beh) ts (5311 *
3. 25 2, 3, I
5811 Bio™ + gBip
]
B =L (M0 (a2, 100 4 - H(2B, B, + + B,.B
Rl e 11 11413 20821 + ByyBop + ByoBys +

M2 .- 1|2
1
Bo3Boy + 2By3B3g + ByyByy + BBy + 312333) + LLE—W (11‘3122321

+

EBll 23 * BriBioBog + ByyBypByg + “311312324 12 Byy +

ip 323) b+1)7(7-2)( 3. +35 g 3)

y12 24 11 "12 2711712

__ 1 2 2
Byp = WE% A3 - H(%Bel " ZPo0pp * ByyBog + BypByy, + By By +

(r + 1)7 2 2
1P33 + ZByaByg + By, 3&) * P11 B0 + o Boo + P11 By *
1 {r + 1)7(7 - 2)f1p &
B11B1sBoy + 581188, + 3By, 1322) + (3B +

1%31123122ﬂ




18 ' ‘ NACA TN 2539

o1
By3 = - [ (2320323 Po1Pee * BynBoy + 2By By, + 2P *

(r + 1)y 2 2
2B1pByy * 21312335) _‘—“(II 11 By * 35511 Bog *

1 . 1 1, 2 1, 2
P11%12%00 * F81B1sB0p + 3B11B10Boy + $8,,78,, + 1B, B23) *

Calpl - o) 3 8311312‘3‘)‘,

-1 1, 2
B = e lEH(§B22 + 2BooByy, *+ ByyBpy + ByyBoo + B Bus 4 By Bsg +

(x + L)y (1 RE
BysByg) + 5 ( By Bop + 81178y, + 5B1B1oBy + 5B11B1oBys +

-2
281578y + %3122324) — LG )%]3111L + 381,282 + %Bmlﬂ

=1
B1F5 = M02 . [H(]32132lL + B22323 llB31|- + BllB36 + B12B33) +

1
u(lBll Bog + 1“311]5”12]322 ]'311 BioBoy + 1%5122321) +
feiflr-2) (%3113312 * %31131235’

= 1 mllp 2 + {7 + llz 2
P46 = 0z 1[3(5323 * PoaPoy *+ ByyBy + B, B 4) > (u 11 By *

-2
FP11B1sog + 1153122323) s 1%1(7 ) iB) 122)

= 1 - 1 2
By, = e IE(B23B21I_ + 1312]335) + -(L—lle (2131113121321L i, 1323) +

O+ -2)1 3
+ 217 (5311312)]
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= 1 1 2 . (r + L)y {1 2

(r + 13(7 - 2)%}312@ (34)

By, =0 if n 29

where H = Mo2 2y 1) -2

2 2(r - 1)
the an's are now expressed in terms of All and Al3' In the

For given free-stream Mach number and 7,

numerical example, 12 parameters are taken in the p-series which seems
to give satisfactory convergence at high Mach numbers.

The condition of irrotationality is now the only differential
equation remaining to be satisfled. In terms of V¥ and polar coordinates,
equation' (4) becomes

o + 2900 - p(ay) = 0 (35)

where

r

AV = Y., +-—&+%?2-9—

The Galerkin equation for determining the parameters A, is:

r=

fr=oo p=21t
1Y =0 Er“’r“)ﬂ'ge--p(aw) %r de dar = 0 (36)
I
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With the two parameters A and A in V¥, equation (36) becomes:
11 13 b

il [ +

6=2mx .
D +F’9‘V9-pmﬂ( L)emsaoar=0 (30

- p(Awi]( é%) sin @ @@ dar = 0 (37)

Carrying out the integration and taking 7 = 1.405 the following
equations are obtained for different values of M,. The parameters

taken in the p-series are Bll’ Bl2, B20, B21, 322, B23, B30,
1
B33, B32, Bho’ Bhl’ and Bh2' With these B 's there result

at My =

O.79lh16éAll + O.Olh8386A13 = -0.0529632 + 0.0011372A1IA13 -

0.02903814, ;2 ~ 0.03531534, 5°

~ 0.0368037A 2 _

0.02814074; 124 11813

13
0.0265TTA;13 - 0.05370324, 33

-O.Oh16032A11 + 2.1113662A13 = 0.0565330 - 0.0524788A11A13 -

o.oou9h65All = 0.0516919A

13

o.oh26662A112A13 + o.o61h285A11A132 +

0.01821huAll3 - o.o776527Al33
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At M, = 0.4

0.893971841; - 0.02930k54; 5 = -0.1386222 - 0.0363370A 14, -

0.020820541)% - 0.15941514, 52 +
o.0557317A113A13 - 0.1400827A11A132 .
0.0837686411° - 0.16851114, ;5
-0.11651734;; + 2.2168#08Al3 = 0.1313933 - 0.1462311A11A13 -
0.1092484a, ,2 - 0.20467694, 32 -

0.053295A1,%A; 5 + 0. 32477574, 1A .2 +

0.0591811A113 - 0.1892021Al33
At M, = 0.48:

1.05887734,, - 0‘0792806A13 = -0.3375697 - 0'0768956A11A13 -
0.03087941,% - 0.70052714, .2 +

0.0580232A112A13 + O.362238A11Al32 -

0.07863184,,3 - 0.19048914, .3
-0.229562541 1 + 2.2151124; 3 = 0.2795736 - O.738h032AlIAl3 -
0.22720914172 - 0.91228364)52 +

0.210928417%4; 5 + 1.06784247 14,52 +

0.12691454,,3 - 0. 14467664, 33

21
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At M, = 0.5:
1.058804547 ~ 0.094396kA;3 = -0.4354569 - 0.0744038A131473 ~

0.06876314112 - 1.028259TA;3° -
0.0279679417°413 + o.390h425A1IA132 +
1.2365694,13 - 0.579232844 33
-0.2586206A17 + 2.15437h9Ay3 = 0.3471313 - 0.9668059A11A13 -
0.28968044712 - 1.2930194473° +
0.4529877A12A, 5 + 1.T020295A) 14,37 +

0.1361617A1,3 ~ 0.38692214, 53

These equations can be solved by the method of successive approxi-
mation as outlined in references 1 and 2. The parameters at various
Mach numbers and the computed meximum velocities at these Mach numbers
are shown in table I. These values show good agreement with those
obtained by other approximete methods. At My = 0.5 the method of
successive approximation fails, and it was found by graphical method
that these equations do not have a solution. This agrees with a previous
investigation as reported in reference 7 where the velocity potential ¢
was used. This indicates that the flow is no longer irrotationsal and
shock waves have probably appeared. The limiting free-stream Mach
number 1s between 0.48 and 0.5. This value is probably too high because
only two parameters in ¥ are used. This fact has been discussed in
reference T.

Po get an idea of the convergence of the V- and p-series, the values
of meximum velocities and p at M, = 0.48 are computed and listed in

tables II, ITI, and IV. 'The p-series does not appear to be convergent
when the parameters B, A are added one by one, but if these parameters

are added by the group the series becomes convergent. This can be seen
by comparing the values of p and the maximm velocities with various
numbers of B,,'s as given in tables II and IIT.
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TRANSONIC FLOW PAST A CIRCULAR CYLINDER WITH SHOCK WAVES

When the free-stream Mach number reaches 0.5 there is no solution
to the equations obtained by assuming irrotational flow in the entire
domain. Shock waves probably have occurred. Thus the flow is irrota-
tional only in the region before the shock waves or D; and becomes

rotational in the region behind the shock waves Do. The approximete

solution according to the modified Galerkin method can be carried out
as follows:

(1) The locations and the obliquity of the shock waves are first
assumed from the best evidences available.

(2) When the assumed shock waves are inserted in the flow, the
domains Dy and Dy are thus defined. In the region Dy, the flow

is still irrotational. The boundary conditions are that the velocity
at infinity is equal to the undisturbed velocity and on the surface of
the body V¥; must be equal to a chosen constant. The values of ¢1

and p; may be assumed in the same form as in the case before the shock
waves occur. The parameters Ay, and B,, &are determined from the

modified Galerkin method. The only difference between the present case
and the previous case is that In this case the integrals are to be
extended only in the region D instead of the entire flow region.

(3) The entropy distribution S = cyf(¥) in the flow after the

shock is to be assumed next. From the flow conditions before the occur-
rence of shock waves, a good approximation of f£(V¥) may be found by
rough preliminary calculations.

(4) The boundary condition at infinity of the flow after the shock
is that p is equal to the constant pressure p,. With f£(V¥) assumed,

Po(x,y) can be computed from equation (10) and the velocity distribution
from equation (5a).

(5) With the above boundary conditions and the condition that V¥ = V¥o
on the assumed shock waves and common streamlines of Dy and Dy, Vo
and po are then assumed in the forms of series with undetermined parem-

eters. These parameters can again be determined by the modified Galerkin
method.

(6) After thése undetermined constants in ¥; and Vo, are computed,
the values of (l/pl) (Bllfl/an) and (1/p2) (Bllfg/an) at the shock waves
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can be found and f(¥) is calculated. If (l/pl> (&lfllan) is not equal
to (llpg) (B\VQ/Bn) and f(¥) found is not the same as f(¥) assumed,
as is generally the case, adjust the locations and the obliquity of the
shock waves. Then based on the new position and shape of the shock waves,
assume & new f(V¥) and repeat the computations again until these values
check with each other in two consecutive cycles.

A numerical example will now be carried out. With V¥; and p; as

assumed ih equations (31) and (32) and by taking 2 parameters Ajj

end Aj3 in equation (31) end 12 parameters in equation (32), it was
found that there does not exist a solution at My = 0.5. In refer-

ence 11 it is shown that when the shock waves first occur they are
almost normal shocks located near the point of maximum velocity. As

a first approximation, assume that at M, = 0.5 there are two normal
shock waves located at 6 = n/2 and 3ﬂ/2 from r=1 to r = 1l.5.
The separating streamlines between the regions Dj; and Do are assumed

to be the same as the streamlines -In the flow at My = 0.48 passing
through the points r = 1.5 and 6 = n/2, 3x/2.

To determine the parameters Aj; and Ay3, integrals (37) and (38)

are to be extended in the above assumed region. This can be done by
taking first the integration over the entire flow region and then sub-
tracting from the resulting values the values of these integrals evalu-
ated in the region Dp. The region Do consists of two areas, namely,

a semicircular ring with r from 1 to 1.5 and 6 from =/2 to -n/2 and
a symmetrical tail-shaped area. The dominating parts of the values of
the integrals happen to be in the semicircular-ring area where the
integration can be carried out analytically. In the tail-shaped area,
analytical integration becomes rather laborious and numerical integration
has been used. After subtraction, these two equations are

2.0587564y; - 0.2021789A13 = -0.8773276 ~ 0.191275TA13A13 ~
0.193152047,2 - 2.0107684,52 +

o.3h9o6h8A112A13 + o.89h8537AllAl32

0.00879524717 + 9.21904184 33
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-0.3358551A1 7 + 5.2963361413 = 0.7652748 - 1. THTE66MTA) 145 -

0.46243844,1% - 2.0882384137 +

25

0.7361791A112Al3 + 2.9033634A11A132 +

0.357Uh36413 - 7.197943k4, 53

While a solution does not exist before the integrals in D, &are sub-
tracted, solution of these equations now does exist. Solving, there

result:

With these values of A;; 'end A13, the point at 6 = n/2 with a

unit local Mach number is computed to be at r = 1.6. This indicates
that the shock waves probably would terminate at a value of r between
1.5 and 1.6, and the region D; as assumed 1s a good approximation.

The boundary conditions for Vo and pp are as follows:

At r =w, p =p, &and therefore

Do _-£(¥
027 = E% e,f( 2)

At r =1, since V; 1is taken as zero,
Yo =0

To insure the vanishing of normal velocity,
Yoo = 0

On the shock waves and the common boundary,

1]’2 =‘lf1

(39)

(ko)

(k1)

(k2)



26 . NACA TN 2539

Conditions (39), (40), and (41) are satisfied if ¥, and p, are
assumed in the following forms:

¥y = Z Z A'mn(l'li - rmJ:FQ) sin n9 + (r - %-) sin 6 ; Cpr® sin®e  (43)

and
p = Eﬁe’f(‘”gﬂ MEPIDILINE T (k)

Note that ‘lfg becomes a function of y =r 8in 6 at r =w. The

constants C, are to be determined by the collation method in terms
of A'mn so that ‘4"2 = \lfl at a number of points on the shock waves
and the common boundary. With f(‘lfe) assumed, B'y, may be solved
in terms of A'y, from equation (24) and the parameters A'y may

be calculated from equation (26) by using Galerkin's method. A numeri-
cal example has been tried. It was found, however, that unless some
modern high-speed computing machine is used the computation becomes

very lengthy.

New York University
New York, N. Y., March 1, 1951
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TABLE I

PARAMETERS AND COMPUTED MAXIMUM VELOCITIES

AT VARTIOUS MACH NUMBERS

M, o‘.3 0.4 0.47 0.48
Ay -0.067T7 -0.1537 -0.296 -0.316
Al3 0. 0255 0.0Lok4 0.088 0.087
0 T 1
- at 0.8254 0.6972 0.3705 0.2680
o . 9 9.00
A'q T 1 "
g &t 2.1972 2.2859 3.4870 .5525
6 = 90°
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TABLE II
CONVERGENCE OF p-SERIES AT M, = 0.148
. B;4B
By1B1o B;Bﬁ
B11B12 | BogB
Parameters B+ 1B By1Byp 11P12 21
taken in Byj; |B11B1o | 1112 ByoBoy Bo0B21 | BooBo3 ?3323
p series Boo BopBp3 | B3oB3l 30731
B B32BLO
32 By3BLo
Aq ~0.0988| -0.0836| -0.490 | -0.390 |-0.3950| -0.3547| -0.316
Ay3 0.0777| 0.0784 0.120 | 0.091+] 0.0960| 0.1110{ 0.0Thk
r=1
£ at 0.6943| 0.6522] 0.1416] 0.2931| 0.2686] 0.2788} 0.2680
Po 0 = 900
r=1 ’
2 gt 2.3765| 2.5698| 5.5104] 3.5416| 3.7902| 4.5503| 4.5525
i 6 = 900




.. TABIE IIX

CONVERGENCE OF p-SERTES AT M, = 0.48

og

Rumber of
parameters

teken in 1 2 3 L4 5 6 T 8 9 10 11 12
p=serles

(1)

at 0.661430.6522|0,141610,2931|0.2686|0.2558|0. 5187}0.3853| 0.2788| 0.0378|0.4520{0.2680

T
01D

cha
{o

2,376512.5698

i

\J1
%)
[
=4

v13.541613, 79021 3. 9797 [2. 45571 3. 2925} k. 5503 | 25, 000C | 2. 6966/ k. 5525

6=90°

lparameters in p-series are taken according to the following order: Biis Byos BEO’ Boy,
Boos Bp3s, Bips Ba1s Bspsy Buos Buys Byo.

R

pECS N VOVN
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CONVERGENCE OF V SERIES WITH

12 PARAMETERS IN p-SERIES AT M, = 0.48

TABLE IV

31

Parameters teken All A11A13
in V-geries )
r =1
L et 0.1007 0.2680
Po 6 = 90°
r=1
2 at 13.5194 k. 5525
U 0 = 900
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Figure 1.- Flow past an airfoil.

Co

Figure 2.~ Simplified skeitch of flow past an airfoil.
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